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ABSTRACT 

 

This paper demonstrates the potential of a robust, low-cost approach to programmable 

matter using beads and string to achieve complex shapes with novel self-organizing 

and deformational properties. The method is inspired by the observation that beads 

forced together along a string will become constrained until they form a uniform rigid 

shape. This behavior is easily observed in any household string and flat-faced beads 

and recalls the mechanism behind classic crafts such as push puppets. However, 

specific examples of architectural applications are lacking. We analyze how this 

phenomenon occurs through static force analyses, physical tests, and simulation, using 

a rigid body physics engine to validate digital prototypes. We develop a method of 

designing custom bead geometries able to be produced via generic 3d printing 

technology, as well as a computational path-planning toolkit for designing ways of 

threading beads together. We demonstrate how these custom bead geometries and 

threading paths influence the acquired structure and its assembly. Finally, we explore 

a means of scaling up this phenomenon by fabricating in carveable foam, suggesting 

potential applications in deployable architecture, mortarless assembly of non-funicular 

masonry, and responsive architectural systems. 
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CHAPTER 1 

INTRODUCTION 

 

Beads, as an art form, are closely entwined with the story of human culture, 

dating back at least 100,000 years. Over the millennia their uses have ranged from 

jewelry, to currency, to game tokens, to ritual objects. Beyond aesthetic or 

symbolic meaning, they also have had physical applications as insulators, rope 

stoppers, mechanical gears, rollers, and weights. One familiar example of a 

mechanical bead assembly is “push puppets” or “thumb toys,” an example of 

which is shown in Figure 1. These typically consist of a figure, often an animal or 

humanoid whose limbs are made up of discrete beads along a string, atop a small 

platform with a button concealed beneath. When the button is pressed, the string 

within the beads slackens, and the previously rigid figure collapses. At the release 

of the button, tautness returns to the string and the figure stands back up. While 

this mechanism is often utilized in toys as a mere curiosity, this thesis will explore 

its practical application to structures, and particularly its properties of (self-) 

assembly. 

 

 



Figure 1. A push puppet with button pressed and internal strings slackened (left); with button 

released and strings taut (right). (http://de.wikipedia.org/wiki/Benutzer:Drahkrub, 2010) 

 

If beads can be formed into controllably rigid shapes resembling animals and 

humans, we hypothesize they can be coaxed into more architectural forms such as 

shell structures, awnings, tent frames, and the like. Moreover, we can extend the 

mechanism by manipulating the shape of the beads and the sequence of their 

threading to enhance these shape-finding properties. For example, when two 

cylindrical beads are forced together along a string, their flat faces will align and 

they will become one rigid cylinder, but if one or both of these beads were 

mitered like a cylinder sliced by a plane at an angle, then the assemblage of the 

two beads would form a predictable angle. The combination of many such beads 

in one or more interconnected sequences would offer even greater shape control 

than is seen in push puppets. 

 

Basic Definitions 

We considered beads to be solids with one or more hollow channels that may or 

may not intersect. This allows Y- and X-shaped beads (Figure 3), as well as more 

complicated topologies. One of the most important aspects is the geometry of the 

contact surfaces, which determines orientation constraints and interlocking 

behavior as well as the torque between adjacent beads. For example, generic flat 

interfaces constrain position but not relative rotation, whereas interlocking 

interfaces can partially or fully constrain adjacent beads. For complex geometries 

our design process begins from a skeletonized “framework”: a connectivity graph 

with nodes embedded in 3d space. This is so as to be as generic as possible. Our 

choice of framework is essentially arbitrary, and need not necessarily reflect any 

kind of pre-optimization or force analysis. For example, the geometry in Figure 2 

is not a true funicular dome, and hence cannot stand without a tensile string 

holding the beads in compression. It would immediately collapse as a pure, 

mortarless masonry grid shell. Conceptually, the emphasis is not upon static form-

finding to produce an ideal geometry at time of manufacturing, but rather to 

produce a robust assembly that will weather unpredictable loading conditions and 



still return to its original state. To generate manufacturable bead geometries, we 

apply a method we term “graph augmentation:” given a framework, we build 

volumetric beads about the edges such that the interface between two adjacent 

beads is aligned to the perpendicular plane of the edge between them in the 

framework (Figure 3). 

 

 

Figure 2. A complete generic dome framework, and the 3d printable bead geometries generated 

via graph augmentation. 

 

 

Figure 3. Graph Augmentation process. Left-to-right: framework, interfaces, and full solid 

geometry.  

 

The channels within a bead are the topological holes, distinct from the cord itself 

which passes through them. For instance, Figure 3.c. shows a bead with an X-

shaped internal channel and two cords passing through it, one from lower left to 

upper right, and the other from upper left to lower right. It could just as well have 

been threaded with two cords, one passing from lower left to lower right and the 



other from upper left to upper right, or any other combination, without changing 

the underlying topology of the node. See chapter 5 for a discussion of threading. 

 

Precedents 

To give an idea of the potential of such a system for architecture, specifically, we 

briefly describe several notable precedents below. While none of these examples 

exhibits all the traits of what we term “bead structures”, together they form a 

picture of possible use-cases and properties of such assemblages. 

 

A simple yet pertinent precedent is the “Self-Folding Protein” by the MIT Self-

Assembly Lab.1 This 1-dimensional sequence of thin cylindrical segments 

connected by hinges was modeled after the Crambin protein. The hinges allow 

rotation about a fixed axis up to some maximum angle, determined by the angle 

of the miter of the end faces of these segments. These hinges naturally tend to 

bend to their maximum extent, since at any other angle they are susceptible to 

swinging in either direction. Intuitively, if one were to randomly jumble and 

shuffle such a chain, gradually the straight chain would kink and wrinkle into a 

zigzag shape entirely determined by the sequence of miter angles of the segments, 

effectively encoding global shape via a series of part-to-part rules. An unordered 

form of agitation (random shaking) results in an ordered outcome (a 

predetermined global shape). 

 

                                                 
 



 

Figure 4. Self-Folding Proteins. Project by MIT Self-Assembly Lab 

(Image Source: MIT Self-Assembly Lab) ("Self-Folding Proteins — Self-Assembly Lab" 2021) 

 

As we will give special consideration to the self-assembly properties of bead 

structures, it is fitting that MIT’s Self-Assembly Lab should furnish several 

precedents. Self-assembly is a suggestive term used with varying definitions in 

the discipline of architecture. Inevitably there is some input energy, and even 

physical or biological definitions allow that this force may come from without the 

system itself, subtly augmenting the meaning of “self” -organizing. For example, 

in the project “Fluid Crystallization” a wave chamber is agitated to ensure 

intermixing of the floating magnetic modules (Tibbits 2014). Therefore, we adopt 

the interpretation that self-organization indicates an unordered form of agitation 

that nevertheless yields an ordered result. 

 

A similar project from Tibbits, the “Macrobot”, also globally programs shape 

from a 1d sequence of local orientations. In this case, the segments are not 

cylinders, but rather truncated bi-cones formed of sheet-metal. The project, 

produced at the Center for Bits and Atoms under a DARPA grant for 

Programmable Matter, explores motorized control of these angles to transform a 



single chain into numerous shapes. Our approach differs in that our bead 

assemblies are non-motorized, with no electronic componentry whatsoever. 

Instead, all control is at the level of shape and basic mechanical actuation, such as 

pulling a string. This simplicity not only adds to the robustness of the system; it 

also allows us to focus more on the geometric aspects of programmability of 

matter. 

 

Being produced of lightweight, stiff materials held in compression by a 

structurally separate tension member, our bead assemblies have much in common 

with post-tensioned masonry. A particularly relevant project is the “Periscope” by 

Matter Design Studio, which used a single sequence of large, robotically wire-cut 

polystyrene foam blocks to achieve a stereotomic tower 60 feet in height on a 

footprint of less than ten feet square (Clifford and McGee 2011). Here, the 

tensioning cables are external to the structure, acting as guy lines, but the 

principle is the same even if the force lines were constrained to pass through the 

volume of the beads or segments. In chapter 8 we explore scaling up the 

phenomena discussed in the start of this thesis through a similar material system, 

employing polystyrene foam beads with internal channels. Moreover, we seek to 

extend this example by applying tension dynamically, taking full advantage of the 

shape-changing qualities of flexural materials in addition to the structural qualities 

of rigid ones. These dynamic properties suggest precedents in deployable and 

tensegrity architecture, although bead structures have the property of distributing 

compressive forces externally and tension internally, which contrasts with key 

examples such as inflatables and the iconic bar-and-cable systems of Kenneth 

Snelson and Buckminster Fuller. 

 

A project by the Digital Structures Lab at MIT exploring post-tensioning of non-

funicular structures offers an interesting comparison with these bead systems. The 

project makes use of graphic statics, a centuries-old method of relating form to 

force through vector diagrams, to find the position and stress of a post-tensioning 

cable that could compensate for non-axial compressive forces. Graphic statics has 



regained popularity in architecture in the last decade, in part thanks to the 

contributions of the Block Research Group at ETH Zurich and the Polyhedral 

Structures Lab at the University of Pennsylvania. The Funicular Explorations 

Pavilion by the Digital Structures Lab offers a demonstration of their method 

applied to a wall-leaning half-arch. The arch is mortarless and nonfunicular, but it 

is held in equilibrium by external tension wires, in a manner similar to the arches 

of the Pavilion of the Future engineered by Peter Rice of Ove Arup & Partners for 

the 1992 Universal Exposition in Seville. Bead structures exhibit similar 

versatility; bead masonry need not be funicular, because the tensile cord within it 

carries non-compressive loads required to stabilize the structure. But unlike 

externally post-tensioned masonry, no calculation is required. In theory the 

structure will be stable for some (possibly very large) applied force, which can be 

found simply by increasing the tension until the structure stands. Moreover, while 

the method of external post-tensioning via graphic statics becomes unwieldy for 

3d structures, the method of beads extends naturally to the third dimension. 



CHAPTER 2 

PARAMETRIC INTERPRETATION 

 

We begin to analyze the mechanism of rigidifying beads by examining the 

equilibria and the configuration spaces of a variety of common bead geometries. 

By “equilibria” we refer to the relative position of two adjacent beads when 

pulling on the string would not induce the beads to move with respect to one 

another. One could also think of this as a “locked” or “jammed” state. 

“Configuration space” refers to the set of valid tuples of parameters of a system. It 

is therefore inherently dependent on which parameters we select for analysis. 

Depending on the geometry in question, it can be difficult to define the 

configuration space and explore all possible jammed states, but we can construct 

several demonstrative examples. 

 

Cylindrical Beads 

One of the most common primitive bead geometries is a cylinder with a hollow 

channel through its axis of symmetry. Our definition of self-assembly refers to the 

emergence of “order”, which for the sake of argument can be quantified as the 

size of the system’s configuration space, that is, the volume spanned by the valid 

domains in its parameter space. For example, we could measure the maximum 

angle between consecutive cylindrical beads with respect to the distance 

separating their facing ends. It is helpful to consider the channel to have 

effectively zero radius, and to assume the string is taut, such that the cord forms a 

piecewise straight curve between the centers of the two beads’ adjacent flat faces. 

If we define the length of this cord as l, the radius of the beads as r, and the 

maximum angle between the two beads’ axes as θmax, we obtain the set of 

equations below whose plot is shown in Figure 5, revealing a continuous 

monotonic decrease in θmax as l decreases. In practice, this means that any 

shortening of the cord, such as by tension, will reduce the size of the 

configuration space until the system is forced into a constrained shape. 

 



 

Figure 5. Maximum angle attainable between cylindrical beads as a function of the length of cord separating 

them. Note that θmax → 0 as l → 0, continuously but with discontinuous first derivative at l = 2r and l = 

r. This graph illustrates the shrinking of the configuration space with the tensioning of the system. 

 

This graph also suggests something about the cylindrical bead’s jammed states. 

Consider the singularities at l = 0, r, and 2r. The first and most obvious 

equilibrium is when these beads are as close to each other as possible along the 

string between them, so that their adjacent flat faces coincide. Then the two flat 

circular faces are pressed against one another, with the string itself resisting any 

motion parallel to the surfaces, so that the forces compressing the beads together 

cancel one another. This is what we observe when a series of short cylindrical 

beads along a string become like one long rigid rod after they are compressed. It 

is represented by the point l = 0, and visualized in Figure 6.a. 

 

We can also think of two beads in contact as a lever, with their point of contact 

forming the fulcrum. Further jammed states often occur when the string’s pulling 

force acts along a line passing through the fulcrum; since the moment of one bead 

with respect to the other is determined by the perpendicular distance of the force 

line from the fulcrum, there will be no relative rotation. Practically speaking, even 

when the force line merely passes close to the fulcrum, the mechanical effort to 

dislodge the near-locked state may still be infeasible. At l = r and l = 2r the beads 



can take on the configuration in Figure 6.b. and Figure 6.c., respectively. In these 

figures the fulcrum is highlighted. Note that it is indeed transected by the line of 

the cord. 

 

 

Figure 6: locked states, solid cylinder 

 

Tubular Beads 

We assumed until now that the channel’s radius is much thinner than the outer 

radius of the beads. When this is not the case, beads’ equilibria are not as 

predictable. For example, if the inner radius is approximately equal to the outer 

radius, i.e. if the tube wall has effectively zero thickness, then the probability that 

they line up exactly is also basically zero. A slight displacement of one tube 

perpendicular to its axis will reduce the points of contact between the beads to just 

two, and they will be free to rotate about the line between these two points up to 

some maximum angle as demonstrated in Figure 7. Even if the wall thickness is 

nonzero, beads can rotate around the line between the points where the outer edge 

of one tube intersects the inner edge of the other. If more than two tubular beads 

meet at a point, it becomes even less likely they will align axially, as seen in 

Figure 8. As such we often rely on topology programming rather than shape 

programming to induce rigidity in a system of tubular beads. For bead systems 

like these the analysis of mathematical rigidity of the overall network becomes 

especially applicable. See chapter 3 for a continuation of this discussion. 



 

 

Figure 7. The angle θ of three-point contact can be determined for a given outer radius R, wall 

thickness t, and axial offset o of one bead with respect to the next. 

 



 

Figure 8. A nonrigid framework with degrees of freedom partially reduced through greater topological 

connectivity. 

 

Spherical Beads 

Spherical beads have only one equilibrium: an attractive force between the 

endpoints of these beads will always bring the beads’ endpoints closer together, 

until they are coincident. This can be demonstrated by contrast with the 

cylindrical example. The cylinder’s locked states occur when the thread between 

two beads passes through the fulcrum, i.e. the point of contact around which they 

are rotating. But if a line passes through two points on the surface of a sphere, one 

of them being the endpoint and the other the point of contact, then the only way it 

will not intersect the interior of the sphere is if those two points are coincident, i.e. 

the endpoint is the point of contact. This explanation generalizes to any convex 

bead with smooth derivatives. This suggests that spherical beads are less likely to 

become jammed, and to an extent this is true; however, the lack of a flat interface 

means they touch in at most one point, which reduces the effective rigidity of the 



contact. Still, their interface locally approximates a flat plane, which can 

compensate slightly. 

 

Bi-cone beads, another common shape in beadcraft and the shape chosen for the 

units of the Macrobot project by the MIT Self-Assembly Lab, demonstrate this 

even more clearly: even when the endpoints of two adjacent beads are coincident, 

they are free to rotate around that point up to some maximum angle. This can be 

used to create a constraint on the angle between two adjacent beads, without 

constraining the plane in which that angle lies so that it can rotate freely around 

the axis of either bead.  

 

 

Figure 9. Three common types of orientation-constraining interfaces, with different embedded 

intelligences: interlocking, screw-in, and multi-cord interfaces. 

 

Interlocking Beads 

Figure 9.a. shows a bead with a simple interlocking interface. This helps secure 

the rigidified beads against becoming dislodged, but if the interlock is too specific 

it can be hard to coax the beads into their precise interlocking positions. To give 

an intuitive example, consider beads with a conical key of a certain angle τ. The 

bigger τ, the blunter the point of the cone; the smaller, the pointier. We might 

correctly guess that a pointier cone will fit more securely in an adjacent bead, but 

will be more difficult to line up in that position in the first place, like threading a 

needle. We can verify this by observing the equations for the maximum angle 

between adjacent beads with a given τ. R is derived from τ and represents the 

length from the tip of the cone to its circumference. These equations become the 

same as the above equations for cylindrical beads in the limit as τ goes to π/2. 



However, for τ < π/2, there is a discontinuity in the graph at l = R. This manifests 

as a vertical tear in the graph of the configuration space, or physically as a 

popping or flipping action of the beads, where their relative angle suddenly 

becomes much more constrained or much freer with only a small change in the 

length of the cord between them. 

 

 

Figure 10. Configuration space of conical interlocking beads, shown in section. The 3d graph of 

the configuration space boundary is discontinuous for τ < π/2. 

 



CHAPTER 3 

RIGIDITY INTERPRETATION 

 

Up to this point we have considered locked states from a stereotomic standpoint. 

We have asked whether systems of forces on solid objects would induce relative 

motion. We could also approach questions of rigidity from a purely topological 

perspective. Given a network of incompressible and inextensible “bars” in space, 

connected at a collection of nodes about which they are free to pivot, we call this 

network rigid if the only movements of the nodes that preserve the lengths of all 

the bars are the global translations and rotations of the entire network: so-called 

rigid motions []. This is easily verified using the rigidity matrix of the network, 

defined as follows: if the network is embedded in d-dimensional space, with n 

nodes and m edges between them, then we construct a matrix with m rows and 

n*d columns wherein the (3*v+i)th entry of row e is 0 if node v is not an endpoint 

of edge e, and otherwise is the difference between the ith coordinates of v and the 

ith coordinate of the opposite endpoint, u (Roth and Whiteley 1981). An 

infinitesimal motion is a set of n velocity vectors, one for each node in the 

framework, or, equivalently, the n*d-dimensional vector formed by concatenating 

them into one. In the latter case, observe that the inner product of a motion with 

any given row of the rigidity matrix is 0 if the instantaneous change in length of 

the corresponding edge is 0 under that motion. If L(e) denotes the length of e: 

 

dL(e)/dt = (v-u) · du/dt + (u-v) · dv/dt 

 

i.e., the instantaneous change of L(e) is the speed of v towards u, plus that of u 

towards v, which is equivalent to the inner product of the motion vector with row 

e of the rigidity matrix. Thus, the nullspace of the rigidity matrix represents the 

space of all length-preserving motions. 

 

One way of applying this to our case is to abstract beads as straight lines. These 

lines have some fixed length that cannot change, so we can think of them as bars 



in a framework, and the strings between them act as arbitrarily long inextensible 

cables. This is especially appropriate for beads with a high ratio of length to radial 

extent, such as tubular members of a space frame. Jammed or “rigid” states are 

represented by sets of positions of the nodes of the network satisfying that the 

only valid infinitesimal motions are nontrivial. By the above observation that the 

inner product of rows with a motion is 0 if the corresponding edge length does not 

change, we can determine whether a certain arrangement is rigid by computing 

the nullspace of the rigidity matrix. We wrote a custom C# script for the 

Grasshopper parametric CAD environment that takes as input a set of 3d line 

segments defining a network and outputs a boolean value indicating the rigidity of 

the network by comparing the nullity of the rigidity matrix with the rank of the set 

of rigid motions, which is (d+1)-choose-2 = 12 in 3 dimensions. The component 

outputs true if the former is greater than the latter. How much greater indicates the 

number of the network’s nontrivial degrees of freedom, giving a quantitative 

sense of how nonrigid the system is. 

 

Integrating an infinitesimal motion will theoretically yield a new valid 

embedding. To find a nontrivial motion of interest, we can take any random n*d-

vector in the nullspace and successively subtract from it its components along the 

directions of the rigid motions: three translations and three rotations. Once the 

rigid motions are factored out, we move all nodes some small multiple of their 

corresponding velocity vector, then use dynamic relaxation to correct any small 

changes in the edge lengths that might have been caused by the linearity 

assumption. We can then recalculate a basis of the nullspace of the rigidity 

matrix, project the previous motion onto this space to find its closest valid 

successor, then repeat the above steps. Currently our implementation of this 

pseudocode is not optimized and runs too slowly to be of aid in design, but this 

could be an interesting direction for future work, particularly if it were to help in 

visualizing the boundaries of the regions of valid motions in n*d dimensions. 

 



A given topological network not embedded into space can have multiple rigid 

embeddings, possibly even with the same edge lengths. However, given two 

embeddings with equal edge lengths it is not guaranteed that one can morph into 

the other. The configuration space of such a network is the subset of n*d-

dimensional space which represents valid embeddings, and this space may 

actually be concave or even a disjoint collection of regions. 

 

Figure 11. Visualization of a nontrivial infinitesimal motion of a complex framework. 

 

We are also interested in how we arrive at such rigid states from a loose starting 

configuration, only permitting beads to move closer together, i.e. only permitting 

the strings between them to get shorter. This would imply that the inner product 

of the infinitesimal motion with a given row is 0 if that row corresponds to a bar, 

or simply nonnegative if the row corresponds to a cable. These are all the nonrigid 

motions that are mapped to strictly positive vectors in m-dimensional space by the 

rigidity matrix. 

 



The Grasshopper environment makes it easy to apply the above techniques to 

visualizing an infinitesimal motion as a discrete vector field over the nodes of a 

framework, as in Figure 11. Further research might investigate visualizing the 

configuration space of valid embeddings in order to identify which embeddings 

can smoothly morph from one to the other, and what is the shortest path through 

the parameter space between them. The primary challenge would be the 

configuration space’s high dimensionality, but common methods like projection, 

principal component analysis, and autoencoders might prove useful to break the 

question into manageable parts. 

 

It is important, however, to note some of the shortcomings of the rigidity method. 

The most obvious is the fact that collisions are not accounted for, so bars and 

cables can pass through one another while integrating an infinitesimal motion. 

There are ways around this problem, but all require additional computational 

complexity to be inserted into the algorithms. 

 



CHAPTER 4 

PHYSICAL INTERPRETATION 

 

In theory, using infinitely strong and frictionless materials, one can create a self-

organizing bead structure approximating any given framework. In practice, 

however, friction, strength, and geometry play a role that can be limiting or 

fruitful.  

 

Consider the radius as the maximum distance from a point of contact between two 

beads to the string where it passes through them. A greater radius reduces the 

required tension force by supplying more torque. However, assuming constant 

density and cross-section, the aspect ratio of radius to length is unimportant. 

Figure 12 illustrates that n beads each l/n in length will require the same force to 

rigidify as m beads each l/m in length, for any n, m > 0. 

 

 

Figure 12. The figure assumes a cantilever subjected to gravity. Bead diameter D = 2r is inversely 

related to required tension f. L represents the bead length, m the mass per bead, and n the number 

of beads being supported. Because n is inversely proportional to both m and L, f is constant for 

changing n. 

 



 

Figure 13. Two beads being compressed along a cord, demonstrating the effect of miter angle on 

friction between bead and cord. If θ is the supplement of the miter angle, Fb = Ft cos(θ/2) and Ffr 

= Ft sin(θ/2). For example, if θ = π/2, we would expect Ffr ≈ 71%µFt. 

 

Aspect Ratio 

One hundred cylindrical beads each a centimeter in length will require the same 

force to rigidify as would ten beads each a decimeter in length. However, there 

are advantages to one or the other. For example, in reality the channel through 

these beads may not be exactly the same diameter as the string, allowing the 

beads some small degree of movement perpendicular to their axes. The 

accumulation of error from one bead to the next may produce large global 

displacements between the ends of the bead chain, and these become more 

pronounced the more beads there are in a sequence. Fewer components also 



makes assembly much faster. On the other hand, the more highly discretized chain 

of one hundred beads can potentially be packed into a smaller area when not rigid. 

 

  

 

Figure 14. A low aspect ratio, or a highly discretized structure, must combat accumulation of 

error at its many joints. Here we also see the imprecision of tubular beads as compared with true 

solid cylinders. 

 

Friction can significantly affect the transfer of tension. We observed this behavior 

even in relatively low-friction systems like the PLA and cotton-cord dome 

prototypes. In mitered beads like these, unlike in a straight chain of beads, the 

tension force applied to the cord is differently distributed, as seen in Figure 13. As 

the miter angle decreases, the normal force Fb between beads decreases, and the 

friction force Ffr between the string and the beads increases, requiring 

considerably greater force to pull. 

 

 



CHAPTER 5 

THREADING 

 

For any network topology more complex than a single row of beads in series, 

there may be many ways to thread them such that a cord passes through each bead 

at least once. For instance, we might use several threads each following different 

paths, and some beads might be threaded through with multiple cords. There are 

many properties of a given threading path we might wish to optimize; here we 

consider (I) material economy, i.e. the length of cord used; (II) ease of assembly, 

particularly as relates to symmetry and standardized patterns; (III) shape control 

through topological constraint; and (IV) mechanical effort, especially as it relates 

to the tortuosity of the threading path. 

 

Length 

When the objective is to minimize the length of a single string, this reduces to the 

well-known Route Inspection problem (Edmonds and Johnson 1973). We 

implemented an algorithm using linear programming in the Python module PuLP 

(Mitchell and Dunning 2011) using an approach similar to the simulation 

pipeline: a dictionary-type object records the edges of a framework’s underlying 

graph as pairs of indices of the vertices at their endpoints, and is then exported to 

a comma-separated value file that can be read by a Python script to exactly solve 

this problem. However, the threading paths produced by the Route Inspection 

algorithm can be highly asymmetric. This solution easily extends to n-cord 

threadings: minimizing the length of string when each bead interface must be 

traversed at least n times is identical to the single-cord case, only we duplicate 

each edge in the graph n times. 

 

There are several other possible criteria that may be worthwhile subjects of 

further research. One might wish to minimize the total length of multiple 

independent paths when no path is longer than some maximum length. One may 



also only allow the cord to terminate at specific nodes, such as the feet of the 

dome in some of our physical models discussed later in chapter 7. 

 

Symmetry 

Often, when assembling a system by hand, a symmetrical threading path can be 

more intuitive to follow. The symmetries of a network are encoded in its 

automorphism group, a collection of ways of rearranging nodes of the graph such 

that path continuity is always preserved. By performing any such rearrangement 

on the vertices of a path, we obtain a symmetric copy. The challenge then is to 

determine a set of one or more paths whose symmetric copies will cover the edges 

of the graph with the fewest overlaps. For example, in the threading diagram in 

Figure 15 there are only two unique paths that have been transformed into eight 

copies by a subgroup of the graph's symmetries-- in this case, the mirror 

symmetries. Unlike true mirror symmetry, though, graph automorphisms are 

topological in nature, making them robust to warping. This more generalizable 

approach to path planning can identify redundancy even in geometries that don't 

bear obvious symmetry. 

 



 

Figure 15. A diagram of the threading path applied to the initial dome prototype (Figure 2). Here, 

symmetry is emphasized. 

 

Constraints 

Geometric constraints upon one bead with respect to its neighbors can come not 

only from the bead's shape, but also potentially from the threading pattern. As 

mentioned above and shown in Figure 9, multi-thread systems offer the benefit of 

constraining rotations. Two strings will fully constrain adjacent beads with planar 

interfaces, and three strings will fully constrain arbitrarily-shaped beads, in the 

same sense that three points of contact are required to stabilize a chair. The dome 

model shown in Figure 25 exhibits a 2-cord system with planar interfaces. A 

different approach to multi-cord threading patterns can be seen in the tiled tube 

prototypes in Figure 16. Here each bead represents a node of degree 4 in the 



model's graph representation. Thus, with a minimum of four points of contact per 

bead the structure is fully constrained in position and orientation. 

 

 

 

Figure 16. Cylindrical geodesic prototype exhibiting all X-type beads for greater geometric 

constraint. Self-repairing qualities are seen. (a) before, and (b) after tensioning.  

 

Tortuosity 

Minimizing the cumulative change in angle of a thread’s path presents another 

possible criterion, since static analyses reveal that sharp angles can hinder force 

transmission by more than 70% (Figure 13). Hence more obtuse angles will also 

minimize the force required to tension the bead system. In any network in which 

all nodes are of even degree, we can break this problem into numerous smaller 

problems: for each node, we need to construct a matching among the incident 

edges such that the sum of the angles between matched pairs is minimized. This 

sub-problem can be solved as a linear program, and if solved for each node 

independently the resulting global threading path is guaranteed to minimize sharp 



turns in the threading path. In the special case of a 2-cord bead system, like those 

discussed above, all nodes have even degree by default. Even degree frameworks 

also permit the use of the much simpler “Fleury’s Algorithm” for generating an 

Euler Tour, which is a single path that crosses each edge in a graph exactly once, 

necessarily in the shortest possible way. Fleury’s Algorithm therefore perfectly 

solves the Route Inspection problem for this special subcategory of frameworks. 

 

These methods assume the existence of a static framework; however, we could 

also begin from a surface and place nodes and edges within this surface in a 

manner conducive to more optimal threading paths. For example, a geodesic 

naturally minimizes the cumulative change in angle of a path between two points 

on a surface, hence a geodesic grid shell, though it may require many independent 

cords, compensates with a comparatively low activation energy. The tubular 

models in Figure 16 offer one example of this approach, as helices are geodesics 

on a cylinder. 



CHAPTER 6 

SIMULATION 

 

Dynamic architectural systems place unique demands upon the designer, to 

understand their behavior in time as a continuum and subject to a complex array 

of forces. Whereas physical scale models traditionally served this purpose, to 

mitigate rapid-prototyping turnaround times and quickly validate hypotheses it is 

helpful to examine an assembly in simulation first. For our purposes, the key 

actors are strings and solids, so we must be able to accurately simulate them both 

separately and in collision. String physics simulation methodologies generally fall 

into two categories: soft-body and rigid-body approximations. The latter approach 

treats a string as a chain of many small rigid bodies, each affixed to the next by a 

virtual joint. While soft-body approximations are specialized for deformable 

matter and may better simulate a string in isolation, simulations of beadwork are 

more reliable when strings and beads are approximated by the same type of 

object. Thus, we treated a string as a chain of many small rigid bodies, each 

affixed to the next by a point-to-point constraint, since this approach has been 

validated for speed and accuracy (de Jong et al. 2014) (Gołębiowski, et al. 2016). 

 



 

Figure 17. Still from rigid-body simulation. 

 

Pipeline 

We developed a pipeline from Rhino3d and Grasshopper to the physics engine 

Bullet (Figure 17) (Coumans and Bai 2017). While the primary use of this engine 

is for game physics and machine learning for robotics, its robust rigid body 

collision physics makes it a natural choice for simulating string-bead interactions. 

Specifically, we used the engine’s Python binding, “PyBullet," as it allowed us to 

contain all the logic of setting up and running a simulation in a simple body of 

text. This text is assembled dynamically in Grasshopper from referenced 

geometry and user-specified values and then exported to a .py file in a user-

specified directory. The file can then be run from most code editors or the 

command line, like any Python script. 

 



 

Figure 18. Rhino/Grasshopper to PyBullet simulation pipeline flow diagram. 

 

Use Case 

The use of this engine allowed rapid iteration through many bead geometries, 

helping to guide time and resources toward producing physical models that were 

more likely to yield interesting behavior. An example of a successful application 

of the simulation was in reproducing and expanding on a simple phenomenon we 

discovered in 1d sequences of mitered beads. We not only reproduced the 

observed behavior of 180-degree alternation, but also, we extrapolated this to 

create a 90-degree alternating sequence without having to physically print or 

otherwise manufacture a model for testing. 

 

  

 



Figure 19. Simulation of bead shape that spontaneously arranges in an alternating pattern, (a) 

before, (b) after 

 

Challenges 

Unfortunately, the maximum number of links in a physics multibody is limited by 

the global variable MAX_DEGREE_OF_FREEDOM, which isn’t exposed to the end 

user and instead is kept capped at 128 in the engine binding’s current edition. This 

limit was found by trial and error and confirmed by the engine’s original author 

Edward Coumans through its associated online forum.  

 

One difficulty of simulating beads and strings, especially when realtime 

interactivity is desired, is the computational burden produced by simulating 

collisions between concave mesh objects such as hollow beads. A standard 

workaround is to decompose each concave mesh into a series of convex parts 

whose collisions can be calculated much more quickly and accurately. These parts 

are then constrained to move rigidly with one another so that together they behave 

like the original, concave object. Our simulation workflow employed both manual 

and automatic convex decomposition functionalities. Although we used custom 

scripts for higher accuracy, general algorithms such as VHACD are widely used 

(Mamou 2014). Realtime interactivity in the simulations enabled invaluable 

feedback between in silica experiment, human understanding, and physical 

prototypes. 

 



 

Figure 20. An example of convex decomposition of a cube-shaped bead with channels passing 

through it on all three axes. 

 

The standard physics simulation solution in Grasshopper is Kangaroo (Piker 

2017), however, this is a generic, multi-purpose dynamic relaxation solver, not a 

true rigid-body simulator. PyBullet presents some advantages by comparison. 

Screen picking, where a user clicks on objects and applies forces in the simulation 

by dragging across the screen, is an intuitive and highly interactive way to engage 

with a scene, which is less fundamental to Kangaroo, though in certain cases still 

achievable. The debugging options of PyBullet also offer the possibility of 

viewing bounding boxes and other information that may be hidden by a 

comparable Kangaroo simulation, which can help to identify the source of 

apparent errors. Also, most importantly, forces, the camera, and timing are 

programmatically controlled, so unlike in Kangaroo, events can be easily 

scheduled, sequenced, and animated by precise access to the time domain. 



CHAPTER 7 

SMALL-SCALE MODELS 

 

1-Dimensional Sequences 

1d sequences of beads, while simple topologically, help to clarify the geometric 

contributions of shape programming. For example, orientations need not be 

maximally constrained to exhibit self-organization. As mentioned in chapter 6, 

self-assembly of a regular 180˚ alternating pattern was observed in a simple 1d 

sequence of beads subject to agitation and gravity, in both physical tests and 

simulation (Figure 21). Gravity was key in this case, as it created a preference 

among the arbitrary possible orientations, where the center of mass of each bead 

tended to be as low as possible to minimize potential energy. We hypothesized we 

could use the same principle to create any angle of alternation, and with our 

simulation pipeline we were able to instantly validate this intuition. 

 

 

Figure 21. 1d 180-degree alternating sequence forms from random shaking under the influence of 

gravity. 



 

We 3d printed sequences of beads with various kinds of interfaces, and 

discovered that screw-type interfaces were the most difficult to coax into their 

desired orientation, even though they technically fully constrain orientation. 

Lock-and-key type interfaces were adequate, but multi-cord interfaces could be 

just as effective if not better. 

 

Another 1d sequence of beads demonstrated the power of potentially using 

multiple threadings, tensioning one or the other to produce different rigid 

outcomes from the same beads. One cord passed straight through each box-shaped 

bead, producing a single long rigid rod when pulled. The other passed through 

one of the beads at a right angle, producing a 90-degree turn in the rigidified 

sequence. 

 
 

Figure 22. Multi-cord sequence with behavior dependent on which cord is tensioned. 

 

A small indeterminate “arch” model helped demonstrate the effect of force 

minimization. Rather than a smooth arc, it formed a limited number of “kinks” in 

the sequence of beads. Repeatedly slackening and tensioning this arch, we 

observed that while the arch shape was different each time, certain arrangements 



of kinks were more likely to form in proportion with how much they minimized 

tension, or equivalently how much they maximized the angles at the joints. This 

probabilistic model strikes a balance between indeterminacy and order. 

Conversely, for a set of n kinks at specified positions in the sequence of beads, the 

angles formed at the respective kinks are consistently the same. We hypothesized 

that these angles are such that, if we view the arch as an n+1 -bar linkage in the 

plane, then the sum of the squares of the angles between adjacent members is 

maximized. 

 

a)

 

b)

 

c)

 

d)

 

Figure 23. A simple, indeterminate arch exhibiting multiple stable states (a-c) which appear more 

or less frequently in accordance with how they minimize a function of the kink angles. (d) shows a 

closeup of a kink. 

 

 



2.5-Dimensional Shells 

As an early test we applied our techniques to a simple dome-shaped grid shell 

structure. The beads were 3d printed in generic polylactic acid (PLA) 

thermoplastic, and the threading was performed by hand with cotton cord. The 

first prototype had a footprint of approximately 5 in × 5 in. When the cords at 

each of the four feet were pulled, the beads spontaneously formed a rigid dome 

structure (Figure 24). This success motivated a second prototype at approximately 

three times scale, with a 15 in × 15 in footprint, this time threaded such that two 

strings passed through each bead. This gave more control at the expense of 

increased friction. To compensate, the dome’s assembly was minimally aided 

(Figure 25). When tension was removed from the upright dome, the slightest 

touch would collapse the structure, demonstrating that this is not a true funicular 

dome but a tensegrity reliant on tension and compression in balance. Conversely, 

starting from a slack state, as the dome’s apex was lifted into place 

simultaneously with a gradual reintroduction of tension, the remainder of the 

structure assembled of its own accord. This “one-handed” assembly behavior not 

only demonstrates the influence of threading path and friction on global behavior 

but also promises further use cases. For example, as a counterweighted window 

similarly retains its position after it is adjusted, a heavy structure could form and 

unform with only gentle assistance. This could potentially lead to a novel kind of 

masonry construction with improved safety, user-friendliness, and sustainability. 

 

We also investigated shell structures wherein the beads formed frames for planar 

panels, as opposed to as nodes with radiating spokes. These behave as a kind of 

graph theoretic dual to the frameworks considered thus far. The model shown in 

Figure 26 was additionally attached to a fabric skin, and the tension was applied 

as a lacing pattern around the perimeter of the dome. 

 



 

 

Figure 24. Initial dome prototype, (left) before, and (right) after tensioning cord 

 

 

Figure 25. 15” counterweighted 2-cord model. A beadwork assembly can order itself into a self-

standing structure with little to no aid. 

 

  



  

 

Figure 26. Triangulated shell model, composed of rigid triangular frames. Tensioned by nylon 

cord sewn through attached fabric along the periphery. 



CHAPTER 8 

LARGE-SCALE FABRICATION 

 

Tool Design 

3d printed beads are limited by the size of the printer bed, and more importantly 

they would take an extremely long time to produce at architectural scale. As an 

alternative, expanded polystyrene (EPS) foam, sometimes used interchangeably 

with the proprietary name “Styrofoam™,” is a good candidate for large-scale 

beads because of its high stiffness-to-weight ratio. Aside from physical cutting 

and milling, one of the most common methods of carving EPS is hot wire cutting. 

These cutters function by running an electrical current through special resistance 

wire such as Nichrome or René 41, causing it to heat up to and beyond the 

melting point of foam. This wire can be mounted on various kinds of tools, from 

handheld frames to tabletop jigs to CNC machines. Capitalizing on the precision 

of CNC tools, we elected to utilize the AAP Rand Fabrication Facilities’ ABB 

IRB 4600 6-axis robotic arm as a mount for our hot wire tool. Numerous 

precedents exist for this kind of pairing of robot and tool: The University of 

Michigan TCAUP FABLab’s Kuka 6-axis robot was fitted with a hot wire cutter 

on a U-shaped frame of double and quadruple T-slotted aluminum beams for the 

fabrication of the Periscope Tower by Matter Design Studio. A similar T-slotted 

aluminum frame was attached to the ABB IRB 2400-16 at the Design Ecologies 

Laboratory at Penn State University for research in robotic stereotomy (2). The 

hot wire cutter tool designed by Formeta at Ball State University used 1” steel 

pipe shaped instead of aluminum and made novel use of guitar string tuning pegs 

as an adjustable tightening mechanism for the wire. 

 

                                                 
2
 http://papers.cumincad.org/data/works/att/caadria2015_226.content.pdf 



 

Figure 27. ABB IRB 4600 6-axis robotic arm at Cornell AAP Rand Hall fabrication lab, with 

custom 6’ hot wire cutter end effector mounted to flange. 

 

Due to its modularity and strong precedents, we also elected to construct the 

armature of our tool from T-slotted aluminum. We used 1.5” square cross-

sections to construct a U-shape 6’ wide and 3’ deep, using 90-degree angle plates 

to rigidify the connections and preserve tension in the wire. The major dimensions 

of the tool were partly influenced by the size of the largest foreseeably acquirable 

EPS foam blocks, which at 2’ x 4’ x 8’ would need to fit within its span. For the 

wire itself, we selected 24g Nichrome with power supplied by a 36V transformer, 

capable of heating the wire to more than 600 degrees Fahrenheit. We also selected 

a common light switch dimmer as a means of controlling the current in the wire, 

and thereby the temperature, dynamically. This would prove useful to reduce 



unwanted slack in the wire mid-cut by slightly lowering the temperature, or to 

make the wire cut more smoothly or quickly by raising the temperature. 

 

We 3d printed two custom end caps able to slip onto the open ends of the T-

slotted aluminum armature. The wire was attached to each of these at its two ends, 

held in place by small brass ferrules of the kind used with certain stringed musical 

instruments. Compression springs were used as part of the assembly of the 

endcaps to ensure the uniform tautness of the wire before and after applying 

current by taking up some of the slack that appears as the Nichrome expands with 

heat. The design is slip-on and held securely in place by friction and a load mostly 

perpendicular to the direction of sliding. The PLA plastic is a good insulator, 

helping to reduce the risk of charge leaping from the wire to the armature itself 

and shorting the circuit. These end caps were additionally designed to support 

accessories, such as the vacuum hose mount that forms an adaptive friction fit 

with most standard vacuum nozzles and can be swiveled so as to capture as much 

toxic fumes as possible from the melting polystyrene. Polystyrene releases styrene 

gas when melted, a known carcinogen, requiring all cutting to be done in a well-

ventilated area. The placement of the vacuum hose at the end cap was based on 

the observation that while cutting a piece of polystyrene, most smoke and fumes 

escape from the points where the wire is entering and exiting the block. 

 

 



 

Figure 28. Swiveling friction-fitted vacuum hose attachment for fume collection, 3d printed in PLA 

plastic. 

 

Fabrication Strategy 

With these tools, new strategies were needed for carving bead geometry. One 

primary constraint was the need for all surfaces of the bead to be ruled, that is, 

parameterizable as a surface swept out by a line in space. Beads could either be 

designed this way deliberately from the outset, or else they could be approximated 

with a ruled surface after the fact. In the context of our graph-augmented beads 

this is easier than the general case. “Edge” beads with just a single channel 

through them or several in parallel are created by sweeping cross section 

polygons, so that each face is the surface swept out by one of the polygon’s edges. 

“Node” beads, with more complex connectivity, use the “sweep” command for 

most faces, but their top and bottom surfaces are often not developable. If these 

surfaces are approximately flat, we can take the intersections of the surface 

boundary with a set of planes perpendicular to the surface arrayed linearly along 

their normals. These pairs of points can be connected with lines which can then be 



lofted with linear interpolation to produce a piecewise ruled surface close to the 

shape of the original. 

 

Figure 29. Two ruled surfaces approximating the doubly-curved patch surfaces of a standard 

node bead. 

 

Internal channels would also have to be carved from ruled surfaces, so a true 

piped curve, that is, a channel carved by sweeping a circle through the path of the 

cord, would be unachievable with hot wire cutting. Instead, we proposed two 

possible approaches. The first strategy was to decompose a bead by slicing with 

ruled surfaces that pass through its intended channel cuts, then carve out the two 

halves of the channel on either of the resulting pieces before adhering the pieces 

together again, either with glue or by lashing them with cords around the outside. 

This process of slicing and recombining recalls the "convex decomposition" 

process used to pre-process digital bead geometries for rigid body simulation, in a 

natural extension of the simulation-to-physical prototyping workflow. While this 

could achieve more elegant geometry for the channels, with node beads of high 

degree the decomposition could quickly become quite complex, and the structural 

integrity of the bead may be jeopardized by such fragmentation. 

 



 

Figure 30. A bead with 5 independent internal channels, decomposed with ruled surfaces, shown 

exploded. 

 

The second method proposed was to simply cut straight cylindrical channels. This 

would constrain the outer bead geometry somewhat, as for instance one cannot 

carve a straight path around a concave corner. However, this also meant that the 

channel could be carved without completely breaking the bead into two or more 

separate pieces, by inserting the wire along a plane, carving the channel, then 

removing the wire along the same plane. While this would create a narrow gap 

through which the cord might escape its channel, it could be closed off with 

adhesive, or a tubular reinforcement could be inserted into the entire channel or 

just its ends to prevent such slippage. For example, in our final full-scale model 

we used ¾” PVC pipe segments as a reinforcement, adhered to the inside of either 

end of each channel. 

 



a)  b)  

c)  d)  

e)  f)  

 

Figure 31. Left-to-right, top-to-bottom: (a) A bead is divided by a ruled surface bisecting the 

channel. (b) A rigid hot wire loop is used to carve each half of the channel, from either of the 

resulting halves of the bead. (c) The same tool is used to care shallow channels on the outside of 

the bead, for guiding the lashing cords. 

 

A visualization of what a large format bead test structure might look like is shown 

in Figure 32. Such a structure could provide rigid shelter while using no mortar 

and yet still be safe and robust to unusual loads such as high winds or children 

climbing upon it.  

 



 

Figure 32. Speculation of what a large-format bead structure might look like. 

 

This structure uses unique geometries for every bead, though, which greatly 

increases fabrication time. Taking advantage of symmetry, we proposed a simpler 

ring-shaped geometry for our first full-scale test, since we would only need to 

design the toolpaths for cutting one bead and then run those routines repeatedly 

on the robot. This ring was 2.9m in diameter and formed of 20 beads, each of 

which was as large as could be fit in the raw volume of the foam blocks available, 

which were each about 18” x 10” x 10”. Figure 31.a. shows the completed 

prototype. Notice that there is some unaccounted-for slack, manifesting as a slight 

sag in the ring. We interpret this as having resulted from the cord cutting into the 

foam where it was tautened. Nevertheless, the structure had good integrity and 

even was able to roll over rough terrain. This example of mobility demonstrates a 

possible advantage of compliance and slack. Perhaps in the future a bead structure 

could be applied to specialized wheel devices for off-road vehicles or research 

rovers. 

 



  

 

Figure 31. a) completed prototype, b) rendering with scale figures, c) 4-bead segment showing 

rigidifying properties, without mortar or other adhesive 

 

 

 

 

 



CONCLUSION 

 

In this preliminary study we examined the potential of beads as a medium for 

controlled self-assembly and deployable structures. The potential applications of 

this technique are diverse, including but not limited to: 

 

• rapidly deployable structures for disaster relief, temporary installations, and 

leisure 

• low-energy shape actuation for soft robotics and medical prosthetics, such as 

the CardioARM medical snake robot that uses a similar mechanism to control 

the joints of a many-segmented probe (Ota et al. 2009) 

• assembly from-a-distance for autonomous structures in extreme environments 

as suggested by projects like MIT Self-Assembly Lab's "Aerial Assembly" 

project (Staback et al. 2017)  

 

Rigid body simulation has also proven a valuable tool for rapid prototyping and 

experimentation. The small-scale 2.5d prototypes presented in this paper 

demonstrate some potential challenges of threading and scale that must be further 

investigated in order to validate these concepts for human-scale applications. 

Whereas graph augmentation offers a generic and versatile framework for design, 

further research should leverage our current understanding of forces and 

complexity to produce more robust specimens. Our approach to self-assembly is 

also virtually agnostic to the materials used, such that even off-the-shelf materials 

are sufficient to demonstrate the behaviors discussed, but in scaling up the 

combination of stiffness and lightness will place more constraints on the variety 

of eligible materials. In the context of existing research on self-assembly for 

architecture, though, this is a departure from the specialized handshake 

mechanisms heretofore seen, such as magnets, bimetals, shape-memory polymers, 

and thermo- or hygro-active materials. The self-assembly of beads offers a novel 

approach with potentially greater control of shape formation, tunable and 

reversible rigidity, and structural robustness. 
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