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Abstract 

In biomechanics, Wolff’s law posits that spongy bone is bolstered where internal strain is 
greatest, and vice versa, producing an anisotropic trabecular structure with superior 
strength-to-weight performance. In the interest of applying this advantage to building 
components or entire structures, the present paper pursues a biomimetic application of 
Wolff’s law to space trusses made up of linear beam elements. Two algorithms are 
compared, the most successful of which reduces mechanical strain in trusses under 
several different initial conditions. 

1 Introduction 

This research seeks generative strategies for space trusses mimicking the remodeling 
process in trabecular bone tissue. Speculative benefits of being able to produce this kind 
of porous geometry include improved strength-to-weight performance and stress 
resistance of volumetric building components; greater inter-visibility and permeability of 
such components; and the potential for them to be used as a scaffolding for other 
embedded materials. 

German anatomist Julius Wolff (1836-1902) posited that human bone adapts to physical 
loading by strengthening where loads are greater, and vice versa. “Wolff’s Law” has 
since been experimentally verified to a high degree of precision (Maurer et al. 2015; 
Tsubota et al. 2009). When force is applied to the bone matrix, mechanical loads are 
translated into biological signals through a process called “mechanotransduction” 
(Mullender et al. 2004). Where bone is stretched or compressed, it is more likely to be 
remodeled and to form thicker bone. 
The actual cycle of bone remodeling involves at least three kinds of cells (Figure 1). 

 

 

Figure 1.  Cycle of Bone Remodelling. 
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Over time this process rearranges bone tissue such that the matrix of cancellous bone 
aligns with cyclic loadings (Figure 2). 

 

 

Figure 2.  Bone Anisotropy in Response to Loading. 
There is precedent for mimicking the bone formation process in simulation, especially in 
medical fields (Boyle and Kim 2011). Most simulation approaches employ FEA (finite 
element analysis), although there are some exceptions (Velasco, Lancheros, and Garzón-
Alvarado 2016). FEA attempts to solve a large system of equations to derive mechanical 
properties like strain at given points within a geometry subject to certain forces. Since 
bone remodeling is likely driven by mechanical impulses like strain (Mullender et al. 
2004), there must be some framework to predict or calculate strain at key points in the 
geometry. 
In this case we abstract the spongy matrix of bone as a network of essentially linear 
elements connecting a collection of points, for the sake of computational tractability. 
It is worth noting that topology optimization for strain minimization has been 
implemented in numerous ways in the aerospace and other engineering fields (Zhang et al. 
2016). However, bone remodeling is optimized for cyclical strains rather than static loads. 
Moreover, bone remodeling is intrinsically an agent-based process, with bone cells as the 
agents, unlike most optimization algorithms which iteratively assess global metrics. 
These facts favor a different approach to mimicking bone remodeling, and encapsulate 
the novel potential of this research compared to existing tools. To distinguish the two 
approaches, we call the present strategy “proxy-optimization.” 
In earlier iterations, our software pipeline employed Karamba, a structural analysis plugin 
for Grasshopper, to conduct FEA. The recursive step, shown as a doubled-back arrow in 
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Figure 3, was accomplished with the plugin Anemone. The latest version of the pipeline 
uses C# components with direct calls to an FEA library, instead of Karamba and 
Anemone, in order to reduce dependency on proprietary or poorly-documented plugins. 
While we use Millipede for the isosurface mesh reconstruction, the technique (the 
Marching Cubes algorithm) is open source (Lorensen and Cline 1987). The complete 
latest pipeline is illustrated below (Figure 3). 

 

 

Figure 3.  Software Pipeline. 

The following section outlines our setup for an FEA-driven topology proxy-optimization 
algorithm. It is designed to approximate solid geometry as a space-filling truss, though 
theoretically it can be approximated as any kind of finite element geometry (beam, shell, 
voxel, etc). The subsequent section demonstrates a use case by comparing the 
performance of two different applications of this method. 

2 Methods 

Both algorithms examined had the same basic structure of three stages: 
1) The first stage takes as input three solid regions, ‘load’, ‘mass’, and ‘support’ 

(Figure 4). The mass region is the domain to be filled with a truss of beam-
connected nodes. Any distribution and connectivity of nodes can be used, but for the 
following examples a random distribution is chosen. In this case, their connectivity 
is determined by generating the 3d Voronoi diagram; two nodes are considered 
connected if the Voronoi cells containing them share a face. This helps limit 
connections between relatively distant pairs of nodes, an intuitive constraint on most 
trusses where beams can only be made so long. 
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Figure 4.  Step 1: Defining Load, Mass, and Support Regions. 
2) The next portion of the algorithm begins by solving the finite element model of this 

truss for physical properties in each node and beam. This information then informs 
how the model should be changed. This cycle of analyzing and updating is iterated a 
user-specified number of times. Two different heuristic approaches to the update 
step were implemented, each described here separately: 

a) Subtractive: This heuristic method removes a user-specified number of beams 
with the highest maximum stress. This is comparable to evolutionary structural 
optimization (ESO) methods of topology optimization (Zhang et al. 2016). It is 
illustrated in Figure 5 acting on the arch test geometry, discussed in the 
following section, over the course of 100 iterations. A sample of 20 of these 
iterations are arrayed left to right, top to bottom. 

b) Bidirectional: This heuristic method adjusts the cross-sections of the beams, 
thickening those most stressed and thinning those least stressed. At the end of 
the set number of iterations, a fraction of the thinnest beams are removed. This 
is comparable to bidirectional evolutionary structural optimization (BESO) 
methods of topology optimization, which instead iteratively change the density 
of solid elements as opposed to the cross-section of beam elements. 

 



Simulating Bone-like Strain Adaptation in Space Trusses 5 

 

Figure 5.  Step 2 Proxy-optimization (subtractive heuristic). 
3) After the iterative process is completed, the abstract points and lines defining the 

nodes and beams can be reinterpreted and processed as solid geometry to suit the 
needs of visualization and manufacture. The algorithm discussed here uses the 
Millipede plugin to generate mesh representations of the beams as prisms. 
Optionally, the output can also be viewed as an isosurface of the wire network, as in 
Figure 6. Several inputs (Isovalue, Spread, Power, Strength) allow this isosurface 
mesh to be tailored, affecting the vector field defining the isosurface and hence how 
much of a buffer is formed between the mesh and the actual geometry. For example, 
a smaller isovalue amounts to a mesh that is further displaced from the geometry, 
smoother, and more globular. It should be acknowledged that approximation via 
isosurface may have unforeseen effects on mechanical performance compared with 
that of the idealized truss model. 
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Figure 6.  Step 3: Solid Visualization. 

3 Results 
Early tests showed signs that the algorithm obeyed intuitions, removing material from the 
least-stressed regions of input geometry, leaving behind only the regions subjected to the 
greatest strain. Figure 7 shows a simple rectangular prism mass region that was subjected 
to different angular loads incident on its top, with the vertical axis showing different 
fractions of the initial material remaining. 

 

 

Figure 7.  Early Tests. 
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Algorithm performance was compared for four different test geometries, referred to as 
box, column, lintel, and arch for brevity and clarity (see Figure 4). Each test geometry 
specified load, mass, and support regions. In each case, a 100-node randomized truss was 
used, a load of 1000 Newtons was applied to each node in the load region, and each node 
in the support region was treated as having no degrees of freedom, i.e. being fixed in 
space. Note that the load region covers the top of the geometry in the box, column, and 
lintel examples, but only applies to the center in the arch example. Likewise, the support 
covers the base in the box and column examples, but only applies to the sides in the lintel 
and arch examples. This is evident in Figure 4, and is shown in detail in Figure 8. Arrows 
represent applied and reaction force vectors. 

 

 

Figure 8.  Arch Test Case Load, Mass, and Supports. 

These test geometries were run through each algorithm for 400 iterations each. See the 
Appendix B for graphs of the average peak stress and moment vs. number of iterations 
for the subtractive algorithm, for each test geometry. Likewise, see Appendix C for 
quantitative results of the bidirectional algorithm. Visually, in these graphs we observe 
consistent behaviors across most test cases: 
1) Subtractive 

a) Maximum element-wise max stress: decreasing at accelerating rate 
b) Median element-wise max stress: increasing at constant rate 

c) Average element-wise max stress: erratic 
2) Bidirectional 

a) Maximum element-wise max stress: decreasing at decelerating rate 
b) Median element-wise max stress: decreasing, then erratic 
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c) Average element-wise max stress: decreasing at decelerating rate 
Qualitatively, the better-performing algorithm is the bidirectional; however, this does not 
relate stress to the weight of the system, or any number of other metrics that could be 
taken into account. The actual shape of the resultant trusses is also illuminating. Shown in 
Figure 9 are isosurfaces generated from the final geometry output by the algorithm. 
 

 

Figure 9.  Isosurface Results (column, lintel, and arch). 

As we can see in the arch and lintel test cases, from a truss initially randomly filling a 
rectangular-prism-shaped mass region like those in Figure 4, an arch-like form emerges, 
with most of the material removed from the center of the base where there are no 
supports. This evolutionary emergence of the arch form, well known to be optimal in 
many load-bearing situations, is of interest as a qualitative result, and bears some 
testament to the intuitive functioning of these heuristics. 

A 3d ceramic powder-printed example of the Subtractive Arch geometry is shown in 
Figure 10, as a proof of concept for future physical prototyping, which might take 
advantage of the already fertile field of custom 3d-printed ceramics research (Sabin and 
Jones 2017; Sabin et al. 2014). 
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Figure 10.  3d Printed Subtractive Arch Result. 
Conclusion 

Topology optimization is a readily available tool in architectural and other design fields, 
but it is often obscured as a backend process in proprietary or poorly-documented plugins 
(Aage et al. 2014). While this gives confidence of performance since optimization is 
essentially a solved problem, it precludes experimentation with the algorithm itself. One 
particular value of this research is its potential to make topology optimization directly 
editable by designers. 

A continuation of this research might proceed with writing from-scratch code to reduce 
reliance on plugins. While FEA can be quite complex, beam theory and space trusses are 
among its simplest and best understood applications, suggesting this effort may be viable. 
Another potential avenue of research is to parametrize the algorithm space itself and 
optimize those parameters, which could drastically speed the search for a good 
biomimetic abstraction of bone remodelling processes. 

Based on this research so far, a proxy-optimization approach to topology optimization 
inspired by the mechanobiology of bone remodelling shows promise of combining 
measurable performance benefits with greater flexibility for the algorithm designer. 
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Appendix A 
Bidirectional Sample Code (abridged): 
				//iteratively	update	radii	of	beams	
	
				for	(int	i	=	0;	i	<	iter;	i++){	
						foreach	(RStatBeam	b	in	FEM.Beams)	
						{	
								if	(Math.Abs(b.MaxStress)	<	lower_threshold)	
								{	
										double	rad	=	b.CrossSection.rr	*	(1	-	delta);	
										StatCrossSection	cs	=	FEM.AddSection(FEM.Materials[0],	"");	
										cs.CircSolid(rad,	b.CrossSection.Segments.Count);	
										b.CrossSection	=	cs;	
								}	
								else	if	(Math.Abs(b.MaxStress)	>	upper_threshold)	
								{	
										double	rad	=	b.CrossSection.rr	*	(1	+	delta);	
										StatCrossSection	cs	=	FEM.AddSection(FEM.Materials[0],	"");	
										cs.CircSolid(rad,	b.CrossSection.Segments.Count);	
										b.CrossSection	=	cs;	
								}	
						}	
						FEM.SolveSystem();	
				}	
	
				//remove	beams	with	smallest	radii	
	
				beamList	=	beamList.OrderBy(b	=>	Math.Abs(b.CrossSection.rr)).ToList().GetRange(0,	
(int)	(cutoff	*	FEM.Beams.Count));	
	
				foreach	(RStatBeam	b	in	beamList)	
				{	
						FEM.Beams.Remove(b);	
				}	
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Appendix B 
Subtractive Heuristic Results 

Box: 

	
Column: 

 
Lintel: 
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Arch: 
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Appendix C 
Bidirectional Heuristic Results 

Box: 

 
Column: 

 
Lintel: 
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